—EmerGen(e)tic—
Exploring the use
of genetic algorithms
In emergent distributed
systems

Ben Goldsworthy, 33576556
Computer Science BSc

DECLARATION

I certify that the material contained in this dissertation is my own work and does not
contain unreferenced or unacknowledged material. I also warrant that the above statement
applies to the implementation of the project and all associated documentation. Regarding
the electronically submitted version of this submitted work, I consent to this being stored
electronically and copied for assessment purposes, including the School’s use of plagiarism
detection systems in order to check the integrity of assessed work.

I agree to my dissertation being placed in the public domain, with my name explicitly
included as the author of the work.

All working documents and results can be found at

www.lancaster.ac.uk/ug/goldswor/scc300/.

Date:
Signed:

Abstract

Adaptive and emergent systems exist to attempt to answer the deficiencies inherent to distributed systems,
and the necessarily finite ability of any programmer to predict all possible eventualities in which his software
may one day find itself. This paper argues that these systems fail to go far enough, and then proposes a further
development—genetic systems—which utilises genetic programming to extend the versatility of a given system
massively, if not infinitely. This paper then proceeds to detail the EmerGen(e)tic framework for rapidly testing
genetic algorithm modules within emergent systems, as well as an example module pertaining to the cache
updating behaviour of a web server. This paper concludes by proposing further avenues of potentially-fruitful
research based upon these programs and its findings.

1 INTRODUCTION

Coulouris et al. (2012) define a distributed system as ‘[...Jone in which components located
at networked computers communicate and coordinate their actions only by passing
messages.” [1] By the very nature of distributed computing, any system will—as a
whole—experience a range of fluctuating conditions and environments that may affect
its performance. Although a well-designed, reliable distributed system will be developed
to be ‘as fault tolerant as possible’ [2] and with as many of these potential operating
environments as possible in mind, the totality of all possible conditions for all possible
futures in which the system remains in use is impossible for the original developer(s) to
have been entirely predicted and accounted for. This inhibits the universality of current
distributed systems, as well as incurring future maintenance and development costs when
they need to be adapted for future circumstances.

Adaptive systems are a subset of distributed systems in which the system is given a number
of submodules that define different behaviour, and the system is programmed with policies
for determining which submodule to use for a given task. An example may be a file server
that has a compression module activate when serving a file over a given filesize. Whilst this
adaptive behaviour does increase the system’s operational range, it still requires manual
programming of policies and thus suffers from the same issues as the general distributed
systems.

Emergent systems are a proposed solution to these limitations. Emergent systems are a
subset of adaptive systems in which the system itself determines the best configuration
to deal with a given situation by trying multiple configurations and assessing their
performance against a given metric. This, coupled with some form of storage for recording
previously-discovered optimum solutions that can be consulted heuristically for improved
performance, provides a more adaptive final system whilst simultaneously reducing
development overheads.

Filho & Porter (2016) best outline the problem in response to which emergent systems
have been developed, stating that (emphasis theirs) ‘[human-centric] approaches [to self-
organising software] rely on prediction of how a system will respond to environments
(which may turn out to be false) and result in inflexibility [whilst a] machine-centric approach
[...] moves the burden of complexity into software itself, avoids the need for prediction of
behaviours, and supports total flexibility [...]". [3]

However, these emergent systems are not too without their limitations. Whilst they do
possess far more flexibility with regards to arranging themselves into new and unpredicted
configurations than does a simpler adaptive system, they are yet constrained by the finite
pool of components they have access to, which are still developed by human hand.
Genetic algorithms rely on metaphors from evolutionary biology such as random mutation
and natural selection in order to develop—over the course of multiple iterations and
utilising a finite set of operations—improved software, with each generation ideally
moving closer towards an optimal solution as specified via the result of a given fitness
function f (). They have been used to produce everything from spaceship antennae [4] to
software bug checkers. [5] In a previous work, [6] this author applied genetic algorithms
to the development of simulated ants. Algorithm 1 shows the algorithm by which genetic
programming is performed.

On the one hand, we have systems that need to be freed from human development as
much as possible in order to be generalisable to the widest range of possible operating
environments. On the other, we have a programming approach in which the human
developer sets up a number of variables before reclining whilst the computer handles the
rest of the time-consuming programming work—the two fields would appear to be ready
allies. If genetic programming could be effectively applied to the generation of components

Algorithm 1 Basic genetic algorithm

Require: initial population
Require: num. of generations
Require: num. of candidates per generation
for all generations do
for all chromosomes in generation do

run test on chromosome
return fitness score of chromosome

end for
for strongest chromosome(s) in generation do

copy over to next generation

end for
for remaining chromosomes in generation do

if small probability = true then

apply mutation/crossover operation

end if
copy over to next generation

end for
end for

for an emergent software system, it would allow the creation of an infinite pool of potential
components and allow the system to theoretically surmount any given situation, given
enough time.

Thus, the research questions that this project aims to satisfy are:

can genetic algorithms be productively used to produce optimum components for
an emergent system? and

assuming so, what are the optimal conditions for doing so (i.e. mutation probabili-
ties, generation sizes, etc.)?

From these research questions come the aims for this project; they are:

to produce a framework for enabling rapid development of genetic improvement
tests,

to test a small, simple program to hopefully demonstrate improvement through
application of these techniques and

to repeat the tests multiple times with a variety of conditions and see what, if any,
trends emerge.

This report is divided into eight sections:

1)
2)

3)

4)

5)

‘Introduction’, in which the broad goal of the project in question is outlined,
‘Background’, in which the history of the field in question is outlined in more
detail,

‘Design’, in which the design of the present solution is outlined in a non-technical
mannet, from first principles,

two ‘Implementation” sections, in which the technical implementation of both the
EmerGen(e)tic genetic testing framework and the specific cachingpolicy module
is detailed,

‘The System in Operation’, in which usage—and normal output—of the systems
above are described,

6)

7)

6

‘Testing & Evaluation’, in which the results of testing on the systems above are
investigated and the project as a whole evaluated, with its successes and failures
candidly discussed and

‘Conclusion’, in which the research questions above are revisited and avenues for
future research signposted.

2 BACKGROUND
2.1 Assumptions

This project operates on a foundation of two assumptions, neither of which—though they
may both appear to be—are axiomatic.

Assumption #1: Programming is hard

IBM found that the cost of fixing a bug can range from a base cost (for one discovered
during the requirements elicitation phase of software design) to 100x that (for one
identified in the maintenance phase). [7] With the lengths of written software steadily
increasing—1993’s Windows NT 3.1 had 4.5m lines of code to 2003’s Windows Server
2003’s 50m—and an average of ‘about 15-50 errors per 1000 lines of delivered code’, [8]
these problems are being exacerbated.! As such we desire to systems that will perform as
many programming responsibilities on our behalf as possible, as well as as much of the
checking, testing and validation work as we can get away with—repetitive, methodical
tasks such as testing especially represent the perfect area for a computer, but not man. We
also desire systems that can be constructed out of smaller, simpler parts that can be more
rigorously tested prior to deployment.? It is these goals that has led to the development of
distributed, adaptive and emergent systems, as well as genetic programming.

Assumption #2: Circumstances change

It would be hubris par excellence to assume that humanity has learnt all that there is to learn
and can be surprised no longer. Bronze age man discovered ironwork, assumptions of
classical physics were rent asunder by the discovery of quantum physics and the discovery
of non-Euclidean geometry is said to have ‘marked the end of an entire line of human
thought, one that had dominated intellectual efforts in the West for centuries.” [11] No
one programmer—nor a team of programmers—can hope to have perfect, 20/20 foresight
encompassing all of the environmental possibilities in which their system may find itself
deployed in the future. Even if they could, theoretically, handle all possible situations as are
known to them now, there is every possibility of a non-Euclidean geometry-esque upending
of the conventional wisdom occurring at an unspecified point in the future, entirely
incomprehensible from within the bounds of their Euclidean worldview—they would be
akin to the denizens of Abbott’s Flatland, trying to conceive of the third dimension.

2.2 Distributed and Adaptive Systems

Distributed systems—amusingly described by Lamport (1987) as ‘[a system] in which the
failure of a computer you didn't even know existed can render your own computer
unusable’ [12]—have their origins in the early days of computing and the concept of
multiprogramming. Carr, Crocker & Cerf (1970) outlined ARPANET, ‘one of the most
ambitious computer networks attempted to date’. [13] As one of the first networks,
ARPANET serves an example of one of the first instances of distributed computing and
a predecessor to the modern-day Internet. Coulouris et al.’s definition of a distributed
system as ‘[...]Jone in which components located at networked computers communicate
and coordinate their actions only by passing messages’ [1] may, however, begin to make
the drawbacks of such a system apparent. As these computers are in different geographic
locations, their needs and experiences may differ—a program written in California may

1. For further exploration by myself of the resultant security risks of this, amongst other factors, see [9].
2. cf. the “Unix philosophy’, best detailed in [10]

8

work fine on the fast, reliable internet connections that are all its developer may have ever
experienced, but less so for the instance of it running in rural India.

One solution to these issues is adaptive systems, in which a distributed system is given a
number of submodules containing different approaches to its tasks. The developer will
then program in various policies for which modules to use in which conditions. Examples
of this could include a live online video player that resorts to a different quality of
transmission when being broadcast to a client with a suboptimal network connection.
Again, the Internet is an excellent example of an adaptive system: with various protocols
on offer, a developer can choose the one that best suits a given need. If error detection and
correction is important, TCP is the tool for the job; if it is not, then UDP provides a faster
transmission with less overhead.

However, these adaptive systems fail to resolve the initial issue of the developer having
to predict the myriad situations his program may find itself running in in the future.
By still requiring the developer’s input in specifying the various module combination
strategies and policies, all these systems achieve is to allow the developer to write more
generalised, less specific (sub)programs. This may be beneficial for rapid reuse elsewhere,
but is otherwise not the solution we seek.

2.3 Emergent Systems

One such proposed solution, however, is the emergent system, or an adaptive system in
which the program itself (or a framework on top of it) designs its own policies based on
trial-and-error and recording performance rates of different combinations of submodules,
the name coming from the possibility of such a system discovering optimal behaviour
unpredicted by its human creators.

Dana’® is a component-based language designed specifically for emergent system program-
ming by Porter (2014), described by the author as ‘an imperative, procedural, interpreted
language, [that] is multi-threaded, and features only interface, record and primitive types’
[14]—it is also ‘syntactically similar to contemporary languages like Java’ [14].

Filho & Porter (2016a) describe a web server written in Dana.* The web server receives
requests for files—a mixture of file types and sizes—from clients and serves them up. The
server can construct behaviour out of a number of components that enable different policies
for cache updating, file compression, etc. The authors test the server in every possible
configuration and against different styles of workload, measuring the request response
time per configuration.

The authors showed that different configurations gave markedly different results—for
example, for a “‘Workload 1 [consisting] of one client repeatedly requesting only one text-
only HTML file, [a particular architecture] performs best because, in this configuration,
the web servers always compress the requested files, and once the file is returned to the
load balancer, it is stored in a small content cache at the load balancer.” [3] Meanwhile, a
cacheless architecture performed better at a workload consisting of ‘one client requesting
a different text-only HTML file for every request’ [3] as caching would provide no benefit
for a constantly-changing series of requests and would only add pointless overhead.

In a further paper, Filho & Porter (2016b), the authors go onto elucidate the limitations of a
simple adaptive system, arguing that ‘[the] requirement [for human specification of control
strategies] is fundamentally opposed to the core ideas behind autonomic computing, which
are borne of the increasing difficulty for humans to understand modern software systems in
dynamic environments.” [15] Developing further their web server platform, they implement

3. Dana documentation and downloads can be found at www .projectdana.com
4. For an explanation of the function of Filho & Porter’s web server, as well as concepts such as ‘caching’ and
‘compression’, see §3

9

a perception and learning system so that the web server can analyse the performance of
varied configurations and determine an optimum arrangement for a given task. Finally, in
Filho et al. (2016), this is consolidated into the single framework REX, which ‘produce[s]
systems that are responsive to the actual conditions that they encounter at runtime, and
the way they perceive their behaviour in these conditions.” [16]

Other frameworks within the same field of emergent systems exist, such as Elkhodary,
Esfahani & Malek (2010)’s FUSION, [17] but I assert the following with this paper: that the
very idea of emergent systems as a whole fails to go far enough towards solving the issues
it was formulated in response to.

2.4 ‘Genetic Systems’

Floyd (1979) said that the following words were written on the wall of a Stanford University
graduate student office: ‘I would rather write programs to help me write programs than
write programs.” [18] This is a succinct description of the goals of genetic programming,
in which representations (usually tree representations) of computer programs are modified
using a set of mutation and crossover operators and a set of varying probabilities for
each to occur. These changes take place across multiple generations and should, hopefully,
trend towards better-performing programs. The applications are vast: Le Goues et al.
(2012) applied them to automated software bug fixers; [5] Hansen et al. (2007) to counter-
cyberterrorism; [19] Hornby et al. (2015) to the shape of spacecraft antennae; [4] and the
author of this paper to the production of simulated ants. [6]

Indeed, the wall of Stanford’s student office neatly encapsulates the thinking behind the
proposal of this paper as to the viability and desirability of applying genetic programming
techniques within the emergent system space-what this author will propose to be de-
scribed as ‘genetic systems’. If an emergent system can already assemble configurations of
provided submodules, test them and rank them, and the goal is to eliminate the developer
from the software development equation as much as possible, then what is next? Why not
have the system assemble the submodules themselves? This would increase the pool of
potential submodules available to the program to be theoretically infinite, and the same
benefits of this emergent behaviour would apply here too. It is this hypothesis that is to be
tested within this paper.

10

3 DESIGN

Within this section the design of the EmerGen(e)tic (from ‘emergent’ and ‘genetic’)
system is outlined. Following that, the web server and caching system used within the
cachingpolicy module are outlined, from first principles, for the non-technical user’s
understanding. For a technical overview, see §5.

3.1 EmerGen(e)tic

The primary goal of this project was to produce a framework for quickly and easily
allowing future projects to test the effects of genetic algorithms on varying elements of
varying systems. To do this, a master Dana program was created which runs through each
generation, calling a separate file (hereafter referred to as a module) to handle all of the
the evolutionary logic—the mutations, crossovers, selections, etc. This is so that future
developers can easily plug ‘n’ play with their own genetic modification modules in the
future. The master program will then run through all the candidates from each generation
to test their responses to differing stimuli. The testing functionality is contained within
a single method, and so should be the only part of the EmerGen(e)tic code that a future
developer needs to modify to implement their own project.

To assist with generalisability, as many settings as possible (e.g. mutation probability, file(s)
to test with, number of generations) were left to be externally set via either command-line
arguments or config. files.

The below flowchart shows the intended operation of the system:

4. Output
results

Results EmerGen(e)tic

1. For each gen.
call module

Mutation
module

2. Create next
gen.’s pop.

Generation 3. Test generation

X

3.2 The Web Server
3.2.1 How a web server works

A web server is a type of computer. It can receive requests from other computers (called
‘clients’) for the files that are located within it via a number of methods, usually across an

11

Internet connection, such as HTTP. Once it has received a request, which will contain the
name of the file requested, it searches its file storage for a match. If it finds it, it sends the
data of the file back to the client. If it does not, it should return a message that the client
knows to interpret as an error message. Below is a flowchart of how a web server works:

Client

1 Cli 3. Server returns
. Client requests file

file

(or error)

2. Server retrieves

j file from
file st
Web 1e stote File Store

Server

3.2.2 Added extras

This is the most basic form of web server—for every request, it trawls through its files for a
match and then returns that to the client. However, there are numerous extra functions that
can be added to improve performance, and which can be combined to best suit various
situations. For example, files can be compressed through various schemes in order to
reduce their filesize before sending, and then decompressed at the client’s end, which
shortens the amount of time taken to transmit the (now-smaller) file.

However, the one most relevant to this project is caching. In caching, a cache is kept—this
is a section of storage that is faster to retrieve data from than the regular file store, but
which does not have the size to hold the full file store. When a file is returned for a client’s
request, it is also added to the cache. This means that if a client then requests the same file
again, it will be found within the cache and returned faster than if the entire file store had
to be searched.

Obviously, the cache will at some point fill up. At this point, various policies for updating
a full cache can be implemented. The simplest is to simply start again at the beginning
and overwrite the first item. More complex ones can bring in variables like which file was
requested least recently, or has been requested the fewest times, in order to try and improve
speed. Again, different policies suit different situations, and there is no ‘magic bullet’.

3.2.3 A tale of two web servers

The present project is based off of Filho & Porter’s Dana web server code. Their project
includes a client program, which is given a list of files grouped by various criteria (e.g.
all large files, all image files, mixtures of both, etc.). It then sends the server program
HTTP requests for each file in the list until it reaches the end. In this particular version
of the software Filho & Porter’s PAL system is implemented, meaning every possible
configuration found is tried—this means that each file is tested with every combination
of the provided caching and compression methods, and the response time of the server
(in ms) recorded. This response time is the metric by which the PAL system ranks various

12

configurations.

The goal of Filho & Porter’s project was to demonstrate improvements in file handling
when using different combinations of policies for different types of request patterns.
However, for the present project, the system is too complex to control all of the independent
variable required for the tests to be run. As such, the scope of inquiry had to be limited to
caching policy only. As such, much of Filho et al.’s server project code was removed. This
left only the caching functionality and some remnants of the web server code.

3.3 Caching

Cache behaviour is located within the /cache/cacheHandlerx.dn family of components.
Filho & Porter’s server code contains six cacheHandlers variants, each with different
policies for determining which item in a full cache—represented by a fixed-size array—
to replace with a newly-requested file, as well as a simple cache system in which the cache
is only one item long. The other methods are:

 serial replacement, where each item in turn is replaced, returning to the first item
upon reaching the end of the array,

o most- and least-frequently used,

o most- and least-recently used.

For example, cacheHandlerMFU.dn contains the policy for replacing the most-frequently
used cache item.

Within each of these variant cache handling policy files there is necessarily a lot of
duplicated code. Common to all variants are the method signatures (but not bodies) for:

e updateCache (), which updates a full cache using the variant’s specified policy,

e clearCache (), which clears the cache completely, and

e getCachedResponse (), Which returns either the item that was received from the cache
or null to the caller.

Cache initialisation is handled as a conditional within updatecache () (i.e. if there is no
cache present, it creates one and places the current item in cache index 0).

There are also a series of functions that are only present in individual cacheHandler files,
such as mostRecentlyUsed() in CacheHandlerMRU.dn. This does what is says on the tin,
returning the most recently-used item from the cache to be overwritten. Another example
is random () (within cacheHandlerR.dn), which unsurprisingly returns a random item from
the cache.

For the genetic algorithm to work it needs a base file. The base file requires all of the
common functionality present and marked as out-of-bounds for the genetic algorithm.
Included in these out-of-bounds methods would be the full complement of methods such
as mostRecentlyUsed (), which could be called upon or not as decided by a given output
program.

3.4 The ‘Cache Policy’ Genetic Algorithm

The basic workings of a genetic algorithm were covered in §1, but here the specifics of the
algorithm as applied to this project shall be outlined.

As this project is concerned only with modifying cache updating behaviour, and thus in
how to produce an index value given differing formulae, the most important line is line
110 of cacheHandlerBase.dn:

index = 0

13

The formula on the right-hand side of that assignment is the scope for mutation. From
that initial ‘0" must sprout new formulae—these formulae are what is referred to in
the remainder of this report as chromosomes. A single generation will consist of multiple
CacheHandler«.dn files (or candidates), each of which will contain a single chromosome.
Within each generation, therefore, shall exist multiple distinct chromosomes. Each of these
sets of chromosomes is known as the generation’s population.

As mentioned before, the basic tools of a genetic algorithm are the operations of mutation
and crossover, which shall be discussed below (along with a heuristic known as ‘elite
selection’):

Mutation

In mutation, a section of chromosome A is replaced with a new value. For example, from
the example chromosome “0’, an operand mutation operation could change it to “4”. For the
mutation within the scope of this project, four types of mutation were implemented:

o binary operator mutation (e.g. ‘2+4” into “2x4”),

« operand mutation,

o unary operator mutation (e.g. ‘nthMostRecentlyUsed (2)” into ‘nthMostFrequently-
Used (2)”), and

o subtree creation (e.g. “2+2" into “2+ (4x2)”).

The first three simply randomly change elements of the chromosomes in the hopes of
tinding particularly efficacious variants. The fourth, however, serves the vital role of
allowing the chromosomes—which all start as ‘0’—to increase in complexity.

Crossover

In crossover, two chromosomes A and B are selected. A random section of A (A’) is then
taken and inserted at a random point of B (B’) to produce a new chromosome C'. For
example, take

A= 2+ (4+3)
B = 4«3

and an A’ of "+ (4+3)” and a B’ between the ‘4" and the '+'—we produce
C = 4+ (443) %3

Variants of crossover also exist, such as multi-point crossover (where multiple A’s are
copied over to multiple B’s). However, for this project, only single-point crossover was
implemented due to time constraints.

Elite Selection

There are a number of time-saving tactics (or heuristics) that can be used to speed up the
performance of a genetic algorithm. One such heuristic, implemented within this project,
is elite selection. This takes an arbitrary percentage of top-performing chromosomes for any
generation (in this instance, the top 10 %) and copies them across to the next generation
unchanged. This ensures that optimal solutions are not simply discarded upon the next
generation.

14

4 IMPLEMENTATION: EMERGEN(E)TIC

This section contains a more technically-detailed overview of the implementation of the
EmerGen(e)tic program.

4.1 Folder Structure

The base folder structure for EmerGen(e)tic is as follows:

e /archives/, where archives of test run data go when after completion of a script’s
run,

e /project/, which contains the mutation project modules,

e /resources/, which contains Dana overhead,

o /results/, which contains per-generation and per-script results files and

e /scripts/, which contains .script files for running through multiple tests, grouped
by some criterion/criteria.

4.2 emergenetic.dn

This Dana file contains the framework for running and testing genetic algorithm projects.®
Passed to it are a number of command-line arguments, including the module to load and
the number of generations to test.

4.2.1 App:main ()

The program is entered through the app:main () method, whereupon the passed arguments
are validated—if any are invalid, detailed error messages are output and the program
terminates. The method runs the setup file setup.sh from within the passes module
directory (and passes the result to a variable of type Runstatus, which can be helpful
for debugging), and then iterates through each generation. For each generation, it runs the
given module’s mutator.py program, followed by the runGeneration () method.

Upon successfully finishing the iteration of each generation, the program exits with a code
of ‘0’—in the event of invalid arguments, it exits with a code of “1".

4.2.2 runGeneration ()

The runGeneration () calls the runcandidate () method for each candidate within the given
generation. Once this is done, it appends a newline to the results.csv file within the
results directory.

4.2.3 runcandidate ()

This is the point at which a future developer will implement their own code for running
and testing candidates for their own projects. In the base release of emergenetic.dn, it is

left blank.

4.2.4 printResults ()

This method prints the results of each test run to output. It then also appends the results
of the run to the per-generation results file resultsz.txt, and to the per-script results file
results.csv within the results directory.

5. See Appendix A

15

5 IMPLEMENTATION: cacuIncporICy

In this section, the technical implementation of the cachingpolicy module used for this
project is detailed.

5.1 Folder Structure

In addition to the base folder structure of EmerGen(e)tic, the following directories were
added.

o /cache/, where the generations of various cacheHandlerx.dn files are kept, each
within a directory numbered with their generation number and in files of the format
CacheHandlerz_y.dn, where z is the number of the generation and y is the number
of the candidate,

. /cachebackup/, which contains a fresh copy of cacheHandlerBase.dn for quickly
clearing the /cache/ directory after a full test run,

e /htdocs/, which contains all the files to request from the web server,

e /project/cachingpolicy, which contains the files for the cachingpolicy module and

e /resources/cache, which contains the Dana specifications for the caching compo-
nents.

5.2 Genetic Algorithm search space

Before a genetic algorithm can be implemented, the search space must be defined:

Let c represent the cache length
Let [represent an AST leaf values
Let n represent an AST node values

leN
n € {x,+,—,+, MostFrequent (), MostRecent () , Rand ()}

Let a (n) be a function that returns the arity of function n
Let 7 represent the result of n (), n(I) orn (I1, ..., luw))
Let i represent the cache index value to replace

reN
ic{reN:0<i<c—1}

c.i=rmod (c—1)

In real terms then, the the set of actual Dana operators and methods npn, used was
NDana € {*, +, -, /,nthMostFrequentlyUsed(),nthMostRecentlyUsed (), random () }

and the resolve flag res, which was passed through to nthMostFrequentlyused() and
nthMostRecentlyUsed () as a constant in each individual program, was of the value

res € {n,o,r}

16

5.3 cacheHandlerBase.dn

From the various cacheHandler.dn files within Filho & Porter’s /cache/ were distilled the
common elements of each (the methods covered in §3.3), collected into one file.®

5.3.1 cacheHandler: getGetCachedResponse ()

This method returns an item specified in a request from the cache if it exists there—
otherwise, it returns null.

5.3.2 cacheHandler: updateCache ()

This method updates the cache if a requested item is not already in it. If the cache is full,
this method contains the formula for determining the cache index to replace. Lines 70-
71—demarcated with the comments //5ec1n and // Enp—indicate to the genetic algorithm
its bounds of operation. Within these lines, the method for determining cache index i is
determined for each chromosome.

5.3.3 cacheHandler:clearCache ()

This method clears the cache completely.

5.3.4 nthMostFrequentlyUsed (), nthMostRecentlyUsed () & random ()

These methods return the item in the cache that fits their criterion (or, in the case of
random(), a random item). Including all of the various most/least frequently/recently
used methods would lead to an unnecessarily large file, so they were generalised into
the methods nthMostFrequentlyUsed () and nthMostRecentlyUsed (), which each take their
n as an argument.

5.3.5 resolve ()

The resolve () method takes a flag indicating how to resolve the situation of multiple
returns from one of the aforementioned three methods (e.g. in the event that the least-
frequently used file is not the only file in the cache with that number of hits). The flag can
be set to return either the newest item, the oldest or a random choice.

5.4 emergenetic.dn

Within the runcandidate() method,” the cacheHandler component within
CacheHandlerx.dn is loaded using Dana’s RecursiveLoader, which ensures that all of
its dependencies are also loaded. A timer is started and each file within the given script file
is requested from the web server. When the script file is finished, the timer is stopped and
the overall time taken (and that the value represented ms) is passed to printResults (). As
RecursiveLoader lacks an unload () method, each of the loaded components is then looped
through and un1oad () called on them in turn.

5.5 cachingpolicy/mutator.py

This Python file contains the genetic algorithm logic for the cachingpolicy module.® It can
be run as a standalone Python script or imported as a Python module into other projects.

6. See Appendix C.1
7. See Appendix C.3
8. See Appendix C.2

17

5.5.1 getSubLists ()

This method recursively produces a List of nested Lists representing every subtree present
within a given chromosome (i.e. every bracketed expression).

5.5.2 crossover ()

This method performs single-point crossover between two chromosomes passed to it as
arguments A and B. It first calls getsubLists() on A in order to get a List of all the
possible subtrees of A. It then randomly chooses points within B until it finds an operand
token, at which point it replaces the operand with a randomly-chosen rist from A.

5.5.3 nutate ()

This method performs four distinct multiple-point mutations. If it is the first run it imports
the individual mutation probabilities from config.conf, and if it is the initial population it
overrides the mutation probability to be 100 %. It then recursively iterates over each token
in the chromosome and has a chance to possibly apply one of the mutation operations.
The recursive element comes in when it encounters a token of type rist (i.e. a bracketed
expression), in which case it calls mutate () upon the sublist.

554 parse () & compile ()

The former of these methods takes an expression as a string (e.g. “2+ (4+2)”) and returns a
List representation (with nested rists for bracketed expressions). The latter takes such a
List and returns the original string expression.

5.6.5 creaternitialpop()

If the python script is called with a generation argument of ‘0" it calls the
createInitialPop() method first. This creates an initial population by copying over
CacheHanderBase.dn and applying mutate () to each candidate with a 100 % mutation
probability.

5.5.6 readChromosomeFromFile () & writeChromosomeToFile ()

These methods are simple utility methods for reading and writing chromosomes from and
to cacheHandler+.dn files.

5.5.7 hasSubTrees ()

This method returns a boolean indicating whether a passed chromosome has nested
expressions or not.

55.8 main ()

The main() method takes the n candidates of previous generation m (passed to it as
arguments) and selects the top 10 % of them to go across unchanged to generation m + 1.
Of the remainder, probabilities of mutation and crossover are applied to each and, when
those occur, separate probabilities determine the type of mutation or crossover that will
occur.

5.6 cachingpolicy/config.conf

mutator.py reads in its probability values from the file config.conf.” This file contains
a number of name-value pairs. The left hand side of each config. pair is ignored by
mutator.py and is thus present only for the aid of the human user.

9. For an example config.conf, see Appendix C.5

18

6 THE SYSTEM IN OPERATION

In this section is outlined the process of creating a new module—and running a suit of tests
using it—via the EmerGen(e)tic framework.

6.1 Creating a Module
6.1.1 Files

To create a new module for a future research project, create the folder within the project
directory. Within this directory, create a Python file mutator.py, which will contain all of
your genetic algorithm and a Bashscript file setup.sh to perform any functions prior to
each test such as creating or deleting folders (this may not perform any tasks, but the file
must still be present).1

6.1.2 Implementation

To implement the new module and test the results of it, code must be written within
the runcandidate () method of the Dana file emergenetic.dn. Within this method will be
defined the process of testing, how to use script files and the metric by which success is
measured. The other methods within the file will remain unchanged.

6.2 Creating Scripts

In order to run a suite of different tests for each candidate, scripts are required. In the
cachingpolicy instance, these script files contain the filenames of different files grouped
by some property or properties. For example, difffile-html.script tests a number of
different files, all of which are HTML but are a mixture of sizes, whilst difffile.script
tests different files that are a mixture of HTML and image and have a range of sizes.
This can be used to easily showcase the system producing different results that provide
optimum behaviour based on different operational conditions.

6.3 Running EmerGen(e)tic

After compiling the emergenetic.dn file, the program can be run. It expects four command-
line arguments, and can take a fifth optional one. The command is as follows:

dana emergenetic <module> <script> <generations> <candidates> [verbose]

<module> is the name of the module folder that you wish to use for your tests.

<script> is the name of the script file for this particular test, located within the /scripts/
directory and without the trailing .script file extension. For example, “difffile” for the
script file difffile.script.

The <generations> and <candidates> arguments are the number of generations to run the
test for, and the number of candidates to produce per generation.

The optional verbose argument, if present, produces far more verbose output text. This can
be useful for debugging.

For example, below is the console output for a typical run of the cachingpolicy module
(with the verbose flag omitted):

ben@metacom-1:"/emergenetic$ dana emergenetic cachingpolicy difffile
10 10

Response time for configuration 0x0: 19 ms
Response time for configuration Oxl: 20 ms

10. For an example setup. sh, see Appendix C.4

Response
Response
Response
Response
Response
Response
Response
Response

Response
Response
Response
Response
Response
Response
Response
Response
Response
Response

Response
Response
Response
Response

ben@metacom—1:"/emergenetic$ dana emergenetic cachingpolicy difffile

10 10

Response
Response
Response
Response
Response
Response
Response
Response
Response
Response

Applying

time for configuration 0x2: 20 ms
time for configuration 0x3: 19 ms
time for configuration 0x4: 20 ms
time for configuration 0x5: 19 ms
time for configuration 0x6: 20 ms
time for configuration 0x7: 19 ms
time for configuration 0x8: 19 ms
time for configuration 0x9: 20 ms
time for configuration 1x0: 20 ms
time for configuration 1xl: 20 ms
time for configuration 1x2: 19 ms
time for configuration 1x3: 19 ms
time for configuration 1x4: 19 ms
time for configuration 1x5: 19 ms
time for configuration 1x6: 20 ms
time for configuration 1x7: 20 ms
time for configuration 1x8: 19 ms
time for configuration 1x9: 19 ms
time for configuration 2x0: 20 ms
time for configuration 2x1: 19 ms
time for configuration 2x2: 20 ms
time for configuration 2x3: 20 ms

verbose

time for configuration 0x0: 20 ms
time for configuration 0xl: 19 ms
time for configuration 0x2: 19 ms
time for configuration 0x3: 19 ms
time for configuration 0x4: 19 ms
time for configuration 0x5: 20 ms
time for configuration 0x6: 20 ms
time for configuration 0x7: 19 ms
time for configuration 0x8: 20 ms
time for configuration 0x9: 20 ms
rank selection to top 10% from prev.

Result: 0_2 copied to 1_2

Mutating 0_3->1_3:
Mutating: O
Result:

Mutating: 0x0

Result:

Mutating: 0/0

Result:

0x0

0/0

0/random ()

0_3->1_3 mutation finish.

Mutating 0_4->1_4:
Mutating: O

Result: 0«1
Mutating: Ox1
Result: 0«1

Mutating: Ox1

Result:

OxnthMostFrequentlyUsed (0)

...and so on. Here is a sample of console output with the verbose flag included:

generation...

19

20
0_4->1_4 mutation finish.

Mutating 0_5->1_5:
Mutating: O
Result: 0-1
Mutating: 0-1
Result: 0-1
Mutating: 0-1
Result: 0-17
0_5->1_5 mutation finish.

Response time for configuration 1x0: 19 ms
Response time for configuration 1xl: 29 ms

...and so on.

6.4 Background Tests

The process can be run as a background process so that the Terminal window/SSH
connection can be closed by the user without interrupting the tests. The user can either
run the EmerGen(e)tic program itself as a background process, or write a script to run.!!
To run the process in the background, use the commands

dana emergenetic cachingpolicy difffile 10 10 &>/dev/null &
disown

By redirecting output to output.txt rather than /dev/null, the user can also track the
progress of the tests as they happen.

11. An example script can be seen in Appendix D

21

7 TESTING & EVALUATION

In this section is outlined the results of various testing of the system. Following that, the
successes and failures of the project will be reviewed and how well it satisfies the research
goals outlined in §1 assessed.

7.1 Testing EmerGen(e)tic

The first test was one to make sure that the EmerGen(e)tic program was working as
expected. Using a very simple helloworld module (that simply took a .txt file containing
the line ‘Hello world” and applied a random chance of mutating the letters into others),
three tests were run.!?

The first test, with mutation probability set to 50 %, produced the following output:

["Hello world\n’, 71_0"]
["Hello world\n’, 71_1"]
["Hello world\n’, 71_2"]
["Hekjo joaky’, "1_3"]

["Hello world\n’, 71_4"]
["hiblm wokly’, ’"1_5"]

["Hello world\n’, ’1_6"]
["Hello world\n’, 71_7"]
["Hello world\n’, 71_8"]
["yeclo wdvld’, '1_9']

[/ jmdlo warld’, ’'2_0"]
["Hello wtrld’, ’"2_17"]
["lejlodyowld’, '2_2"]

["Hello wtxid’,
["Heplo wcrld’,
["vvkgo wnrzi’,
["gello worfd’,
["Hglyo wveld’,
["Hlulowwdglij’,

As you can see, mutations were successfully applied to some (but not all) candidates
on each generation’s run, with the generations further from 0 being progressively less
recognisable from their origins.

In order to test that the system worked too with varying probability values, tests were run
with probability values of 0 % and 100 %.

For 0 %, the results were as follows:

["Hello world\n’, "1_
["Hello world\n’, "1_
["Hello world\n’, "1_
["Hello world\n’, "1_
["Hello world\n’, "1_
["Hello world\n’, "1_
["Hello world\n’, "1_
["Hello world\n’, "1_
["Hello world\n’, "1_

O J oy U1 WP O
N N SN SN SN SN SN O~ N
T

12. See Appendix B

This shows that no mutation operations were applied.
For 100 %, the results were as follows:

"ampcjlcutjs’

xktieosrnyx’
caxedgtiyup’
cgyiujnyapp’
nkwuyamxxz’
rfotmkuheyv’
eveudzvxhzj’
ftgxinfdomw’
mdjomfeoggy’
"fibdllxjmox’

14

14

14

14

)

14
14

14

[
[
[
[
[
[I
[
[
[
[

"pwfumdlcauk’
"bfoxwhovtgm’
"ggpztkejijs’
"drxavuclcka’
wiycvultuli’
uyxeayumsdc’
"mubbtclbees’
"'xezoaznywmq’

14

14

— = e e e

4

skxghsirryo’
"ajoexxutuhd’
"umwormhnxlz’
"htvrrhggvzl’
"pzitdowgnig’

[
[
[
[
[
["aikbtvejkvr’

world\n’

world\n’
world\n’
world\n’
world\n’
world\n’
world\n’
world\n’
world\n’

world\n’
world\n’
world\n’
world\n’
world\n’
world\n’

14

14

14

14

\\\\\\\\
T o Yy G

~

~

S N T
AR \CI \CR \CI \CIN \C N \O T \V)]

~

~

’ 1_9/

P N T TR
DD DNDDNDDNDDNDDNDDN

~

~

O 0 J o U WD EFE O

~

~N oo W DN O

~

oUW NP O

N SN N S N N NN

~

N~ NS N N N N

~

[N S VU R (S

[VO U T

~

~

~

~

~

~

~

~

]

SV VU VO

22

This shows that the mutations were applied to every single letter of every single candidate.
From these, EmerGen(e)tic is shown to be able successfully implement genetic algorithms
and tests thereof. Also, the speed at which modules can be developed is demonstrated:

helloworld took around 15 mins to write.

7.2 Testing cachingpolicy

Avg. Response Time (ms)

difffile-large

(w/ anomalous results)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Generation

Fig. 1.

Avg. Response Time (ms)

difffile-large

(wfo anomalous results)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Generation

Fig. 2.

Aug. Response Time (ms)

samefile-images

(w/ anomalous results)
1838
187

186
185
184

183
18.2

181
1 2 3 4 5 6 7 8 0 10 11 12 13 14 15 16 17 18

Generation

Fig. 3.

Ay Response Time (ms)

samefile-images
(wfo anomalous resulis)
18.55
185

18.45
184
18.35

183

18.25
1 2 3 4 65 6 7 8 0 10 11 12 13 14 15 16 17 18

Generation

Fig. 4.

similar characteristics, such as all calling nthMostFrequentlyUsed().

23

With EmerGen(e)tic itself having been demon-
strated to work, answering the research ques-
tions posed in the introduction to this project
could be attempted. The first question was
phrased ‘can genetic algorithms be produc-
tively used to produce optimum components
for an emergent system?’

To test this hypothesis, the initial probability
variables in config.conf were set to the values
shown in Appendix C.5—the probability of
a complexity-increasing mutation was set so
high in the hope that this would produce more
rapidly a diverse spread of different chromo-
somes.

Tests were then run on the test suite
difffile-large, which requests a series of dif-
ferent HTML and image files, all large. Each
test was run for 18 generations, consisting of a
population of 35 candidates each, and repeated
three times. The results were the averaged
across each of the three runs. The average
result per generation is visible in Figs 1 &
2.

There were a number of anomalous results that
initially made discerning a pattern difficult
(e.g. candidate 14_4 from the first run returned
410 ms). Removing any results >35 ms (only
14 out of a total of 1890 results) produced
Fig. 2, where the trending towards faster and
faster response times is more obvious. From a
wider range of results for the initial few gen-
erations (21-30 ms), the components in later
generations tended towards consistent level of
around 21 ms response time.

It wouldn’t have been surprising to see that
these higher-performing chromosomes shared
Indeed, this ap-

pears to have been somewhat the case, although not exclusively so—the chromosomes
‘11/random () and 'nthMostRecentlyUsed(O) *nthMostFrequentlyUsed (0) " each achieve 21
ms, as did a range of other chromosomes. However, the most common characteristic of
all of the generation 18 chromosomes seemed to be the presence of one or both of the
nthMost+Used () functions—29 out of the 38 chromosomes featured one of these functions,
and 8 featured both.'?

The test suite samefile-images—which requests the same image file repeatedly—was then
run with the same conditions. The results are visible in figs 3 and 4.

There is no visible improvement in either of these charts. Barring two anomalous results,
the response times only varied between 18 and 19 ms, suggesting that no amount of

13. To view all of the gen. 18 chromosomes, see Appendix C.6

24

mutation made a difference on performance. This was expected, however—after enough
runs, every index in the cache will point to identical data and the formula for updating the
cache will be meaningless.

7.3 Evaluation

The research aim specified for EmerGen(e)tic was ‘to produce a framework for enabling
rapid development of genetic improvement tests’. This has been done—EmerGen(e)tic is
simple to extend with new modules, being written in the more widely-known Python lan-
guage (rather than the admittedly more niche Dana). Given a blank copy of EmerGen(e)tic
and this report, it is confidently assumed that a researcher could begin deploying their own
tests in minimal time. To support this claim, the helloworld and cachingpolicy modules
were developed to demonstrate the framework in action.

The cachepolicy module (initially) produced results that appear to support the assertion
made in §1—i.e. that genetic algorithms can be usefully applied to the creation of emergent
system components. As was expected too, this is not the case for all contexts (e.g.
samefile-images), which demonstrates that in some instances, the added overhead of
running genetic algorithm generations is not rewarded with any tangible improvements.
However, perhaps a scope that would have produced more variance than just cache
updating behaviour would have been advisable to choose at the start of the project in
order to better prove or disprove this hypothesis. As it stands, a proof, albeit a slightly
weak proof, is nonetheless provided.

An additional aim was set, to ‘repeat the tests multiple times with a variety of conditions
and see what, if any, trends emerge.” However, between the tests featured in §7.2 and
when the condition-variance tests were due to be run, access to the research computer
was temporarily suspended. Upon returning to it a week later, test runs (even those with
identical conditions to the ones previously performed) no longer produced meaningful
results—response times barely varied for all tests run, regardless of number of generations.
To make sure that this was not a result of the machine’s processing speed increasing and
minor changes in response time being undetectable, all of the test suites were tripled in
length in the hope that minor changes would become more pronounced. Unfortunately
this had no effect, and at this late stage in the project no alternative was left but to cease
testing of the cachepolicy module.

However, the approaches that would have been taken will be outlines in the ‘Future
Improvements’ section at the end of this report.

25

8 CONCLUSION

In §1, two research questions were established. In this section, the answers provided will
be considered. Then, suggestions for further research will be outlined.

Can genetic algorithms can be productively used to produce optimum components for
an emergent system?

This has been shown to be the case. The response times for delivery of certain types of
tiles have been demonstrated steadily decreasing per generation following application of
genetic algorithms. However, it has also been shown that there are some instances where
genetic algorithms are of little use (e.g. when the same file is requested from the web
server repeatedly). In these cases, the overhead of running the genetic algorithm (and each
generation takes a non-trivial amount of time to produce, compile and test) is not rewarded.

What are the optimal conditions for doing so (i.e. mutation probabilities, generation
sizes, etc.)?

As explained in §7.3, issues that emerged late in the project prohibited exploration of this
area.

8.1 Future Development
8.1.1 Completing the original goal of finding the optimal conditions for the genetic algorithm

As previously mentioned, issues prevented this avenue of research from being explored. If
these issues were resolved, it would be useful to revisit this second research question. The
intended plan was to set the probabilities of the four specific mutation operations to 50 %,
run a test suite with mutation and crossover probabilities set at each 10-step interval (i.e. 0
%, 10 %, ... , 100 %) and compare results to determine the optimum probabilities of both.
This could then be re-run with the probabilities set at opposing ends (i.e. 0% and 100 %) and
converging towards and then past each other—this would hypothetically display whether
similar or distinct probabilities for the two operations (if either) are more desirable.

After these tests have hopefully shown a broad region of optimal probabilities, more fine-
grained testing within that region could then take place. This could involve testing the
original two probabilities with a range of values across a smaller step size, or testing
different combinations of probabilities for the four specific mutation operations. For
example, all but one could be set to 0 % and this used to determine how well they work in
isolation.

8.1.2 Designing more modules

For a future project or projects, one could develop and run different tests using the
EmerGen(e)tic framework provided here. For example, a module that applied genetic
algorithms to the file compression options including in Filho & Porter’s original web server.
Alternatively, such a module could be combined with another (such as cachingpolicy) in
order to test a broader scope of mutation than just individual functionality and demonstrate
the potential interlinked effects of this.

8.1.3 A more ‘Danatically’-designed EmerGen(e)tic

When running an EmerGen(e)tic module in which the genetic algorithm is improperly
implemented, and thus can produce uncompilable components, the compilation attempt
will fail for that component and the entire EmerGen(e)tic test run/suite fail upon trying to

26

load the non-existent component object file that has thus not been produced. Dana lacks
exception-handling functionality, as a component’s failure is intended to be signalled to
the calling component via a return. By re-designing the system in a more idiomatically
Dana way and calling the tests as a separate component rather than in the runcandidate ()
method of emergenetic.dn, failure of an individual test could be ignored and the test runs
continued.

Another benefit of this would be the complete separation of the functionality currently
within runcandidate (), which module developers must edit in order to implement their
modules, and the remainder of the emergenetic.dn file, which they should no have cause to
touch. As it stands, the cachingpolicy module contains a copy of emergenetic.dn with the
runCandidates () implementation within it, which overwrites the existing emergenetic.dn
within the base distribution. This raises issues—if a module is written for a specific
version of emergenetic.dn, upgrading it would result in extra, unnecessary workload for
the developer. However, if the runcandidate () functionality could thus be moved into a
separate runCandidate.dn file, then issues with EmerGen(e)tic versions would be resolved.
Also, this would allow EmerGen(e)tic to be distributed as a black box API, without having
to distribute source files (although, as the software is released under the GNU GPLv3,
this last point is less relevant), as well as allowing a user to install multiple modules
simultaneously.

8.1.4 Issues within the present cachingpolicy module

Besides the issues that prohibited testing for optimum conditions, there were a couple other
outstanding issues within the cachingpolicy modules that could be fixed in the future.
Foremost of these is that test runs will sometimes, with what appears to be no predictability,
stop outputting just after finishing a generation but continue to run, draining system
resources until the process is killed. python can be seen to still be running which, along with
the stage in the process where the issue occurs and the lack of an output error message,
suggests that the fault may lie in the cachingpolicy module. The nature of the issue would
further suggest an endless loop occurring somewhere—thus, suspicions fall upon the while
loop within the crossover () method, or the recursive elements of the crossover() and
mutation () methods.

8.1.5 Putting human developers further out of work (through meta-learning)

Finally, and potentially the most interesting avenue for further research of the system
based on the problem it set out to fix (as outlined in §1): meta-learning. [20] In this case,
the system would have an ability not just to rank candidates by a predefined metric (in
cachingpolicy’s case the response time in ms), but also to change its metric using the same
principles of genetic improvement. Despite removing the human developer from much
of the software development via the implementation of genetic algorithms, one is still
required to write those algorithms and, most egregiously, outline the metric(s) by which
performance is measured. If the system could be left to improve its own algorithm and,
if a candidate was found, amend how it judges success of candidates, the goal of the
programmerless system will have been even further achieved.

27

REFERENCES

(1]
(2]
3]
[4]
[5]

(6]
[7]

(8]
9]

[10]
(11]
(12]

(13]

[14]

[15]

[16]

(17]

(18]
(19]

[20]

G. E Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems: Concepts and Design, 5th ed. Addison-

Wesley, 2012.

E. Redwine and J. L. Holliday, “Reliability of distributed systems.” [Online]. Available:

http:/ /www.cse.scu.edu/ jholliday /REL-EAR.htm

R. Rodrigues Filho and B. E. Porter, “Experiments with a machine-centric approach to realise distributed emergent

software systems,” 2016.

G. Hornby, A. Globus, D. Linden, and J. Lohn, “Automated antenna design with evolutionary algorithms,” in Space

2006, 2015, p. 7242.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of automated program repair: Fixing

55 out of 105 bugs for $8 each,” in Software Engineering (ICSE), 2012 34th International Conference on. 1EEE, 2012, pp.

3-13.

B. Goldsworthy, “‘thanks, ants. thants.”: Applying genetic algorithms to simulated ants to produce higher-fitness

generations,” unpublished.

M. Dawson, D. N. Burrell, E. Rahim, and S. Brewster, “Integrating software assurance into the software development

life cycle (sdlc),” Journal of Information Systems Technology and Planning, vol. 3, no. 6, 2010.

S. McConnell, Code complete. Pearson Education, 2004.

B. Goldsworthy, “Critical infrastructures protection: the responsibility of government or of companies?” unpub-

lished.

E. S. Raymond, The art of Unix programming. Addison-Wesley Professional, 2003.

D. Muder, The Unreasonable Influence of Geometry, 2000.

L. Lamport, “Distribution,” May 1987. [Online]. Available: https://www.microsoft.com/en-

us/research/publication/distribution/

S. Crocker, “New host-host protocol,” Internet Requests for Comments, RFC Editor, RFC 33, February 1970,

http:/ /www.rfc-editor.org/rfc/rfc33.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc33.txt

B. F. Porter, “Runtime modularity in complex structures: A component model for fine grained runtime adaptation,”

in Proceedings of the 17th international ACM Sigsoft symposium on Component-based software engineering. ACM, 2014,
.29-34.

I];pF Porter and R. Rodrigues Filho, “Losing control: The case for emergent software systems using autonomous

assembly, perception, and learning,” in Self-Adaptive and Self-Organizing Systems (SASO), 2016 IEEE 10th International

Conference on. 1EEE, 2016, pp. 40—49.

B. Porter, M. Grieves, R. Rodrigues Filho, and D. Leslie, “Re*: A development platform and online learning approach

for runtime emergent software systems,” in Proceedings of the 12th USENIX Symposium on Operating Systems Design

and Implementation. USENIX, 2016.

A. Elkhodary, N. Esfahani, and S. Malek, “Fusion: A framework for engineering self-tuning self-adaptive

software systems,” in Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations

of Software Engineering, ser. FSE '10. New York, NY, USA: ACM, 2010, pp. 7-16. [Online]. Available:

http://doi.acm.org/10.1145/1882291.1882296

R. W. Floyd, “The paradigms of programming,” Communications of the ACM, vol. 22, no. 8, pp. 455-460, 1979.

J. V. Hansen, P. B. Lowry, R. D. Meservy, and D. M. McDonald, “Genetic programming for prevention of

cyberterrorism through dynamic and evolving intrusion detection,” Decision Support Systems, vol. 43, no. 4, pp.

1362-1374, 2007.

J. Schmidhuber, “Evolutionary principles in self-referential learning,” On learning how to learn: The meta-meta-... hook.)

Diploma thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.

APPENDIX A

EMERGENETIC.DN

EmerGen (e)tic 1.0
Copyright 2017 Ben Goldsworthy (rumperuu)

EmerGen(e)tic is a framework for researching the use of genetic
algorithms in emergent systems.

This file is part of EmerGen(e)tic.

EmerGen(e)tic is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

EmerGen(e)tic is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with EmerGen (e)tic. If not, see <http://www.gnu.org/licenses/>.

o T e T e S S S N S e S N N S

~

/ * %

% This program runs the tests that are passed to it as command-line
*% arguments. It contains methods that can be easily overwritten for
*x creating new tests.

*x/

/ * %

*% (@author Ben Goldsworthy (rumperuu) <me@bengoldsworthy.uk>

*x (@version 1.0

*x/

component provides App requires os.Run run,
io.Output out,
composition.Loader unloader,
composition.RecursivelLoader loader,
time.Calendar calendar,
time.DateUtil dateUtil,
data.StringUtil stringUtil,
data.IntUtil intUtil,
io.File,
io.TextFile {

// Required arguments.
int argMod = 0
int argScript = argMod + 1

int argGens = argScript + 1
int argCans = argGens + 1
int minArgs = argCans + 1

// Optional arguments.

int argVerb = minArgs
int maxArgs = minArgs + 1
/%%

% Main method. Runs the generations and mutation. This method

29

*% should not need to be modified.

* %

% (@param params The arguments the program is run with (e.g.

*% the number of generations to run, and the population size per

*% generation, etc.)

*x (@return The program exit code.

* %/

int App:main (AppParam params[]) {
// Checks that there are enough passed array arguments, and that
// they are valid.

if ((params.arraylength >= minArgs) && (params.arraylength <= maxArgs)) {
if (stringUtil.isNumeric (params[argGens].string) &&
stringUtil.isNumeric (params[argCans].string)) {
// Assigns all of the command-line arguments to variables.
int generations = intUtil.intFromString (params[argGens].string)
int candidates = intUtil.intFromString (params[argCans].string)
char module[] = params[argMod].string
char script|[] = params[argScript].string
int verbose = 0
if (params.arraylLength == maxArgs) {
if (params[argVerb].string == "verbose") {
verbose = 1

// Performs any initial setup.

RunStatus setupResult = run.execute("./project/$ (module)/setup.sh
$(intUtil.intToString (generations)) $(script)")

// Iterates through the generations, creating them and then

// testing each of their candidates.

for (int i = 0; 1 < generations; i++) {
// Runs the per-generation mutator.
RunStatus result = run.execute ("python3

./project/$ (module) /mutator.py $(intUtil.intToString(i))
$(intUtil.intToString (candidates))
$(intUtil.intToString (verbose)) $(script)")

// Runs the generation.

runGeneration (i, candidates, script)

return O
// If the ’'generations’ and ’candidates’ arguments are non-numeric...
} else {
out.println("Invalid runtime arguments: Arguments <generation> and
<candidates> must be integers.")
return 1
}
// If an invalid number of arguments are passed to the program...
} else {
out.println("Invalid runtime arguments: Program should be run
as:\n\t ‘dana emergenetic <module> <script> <generations>
<candidates>‘'\n\nProgram may also be run with optional ‘verbose‘ flag
as final argument:\n\tdana emergenetic <module> <script>
<generations> <candidates> verbose")
return 1

/ **
*% Runs a generation of candidates. This method should not need to

30

** Ppe modified.

* %

% (@param generation The generation of the candidate.

*% (@param candidates The total number of candidates.

*% (@param script The name of the script file being used.

* %/

void runGeneration (int generation, int candidates, char script[]) {
File results

out.println("")
// Runs through each candidate.
for (int 7 = 0; j < candidates; Jj++) runCandidate (generation, j, script)

// For the end of the generation’s candidates, appends a newline to

// the CSV file.

results = new File("./results/$ (script)/results.csv",
File.FILE_ACCESS_WRITE)

results.setPos (results.getSize())

results.write ("\r\n")

results.close()

/ **
*% Runs a candidate through a test. Modify this method for changing
*% what is being tested.
* %
*% (@param generation The generation of the candidate.
% (@param candidate The number of the candidate.
*% (@param script The name of the script file being used.
* %/
void runCandidate (int generation, int candidate, char scriptl[]) {
// This method intentionally left blank.

/ **

*% Prints the results of a test run. This method should not need to
% Ppe modified.

* %

*% (@param generation The generation of the candidate.

% (@param candidate The number of the candidate.

*% (@param metric The value of the metric by which candidates are

* %k being rated (as a string).

%% (@param unit The unit of the value (e.g. ms, cm, etc.).

*% (@param script The name of the script file being used.

* %/
void printResults (int generation, int candidate, char metric[], char unit(],
char script[]) {

File results

out.println ("Result for configuration
$(intUtil.intToString(generation))x$ (intUtil.intToString (candidate)):
S (metric) $(unit)")

results = new
File("./results/$(script)/results$ (intUtil.intToString (generation)) .txt",
File.FILE_ACCESS_WRITE)
results.setPos (results.getSize())
results.write ("$ (intUtil.intToString(generation))_$ (intUtil.intToString (candidate))
results.close()

S

results = new File("./results/$ (script)/results.csv",
File.FILE_ACCESS_WRITE)

results.setPos (results.getSize())

results.write ("$ (metric), ")

results.close()

31

32

APPENDIX B

HELLOWORLD/MUTATOR.PY

#!/usr/bin/python

HelloWorld 1.0
Copyright (c) 2017 Ben Goldsworthy (rumps)

HelloWorld is an EmerGen(e)tic module for testing the function of the
EmerGen (e)tic framework.

This file is part of the HelloWorld EmerGen (e)tic module.

HelloWorld is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

HelloWorld is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with HelloWorld. If not, see <http://www.gnu.org/licenses/>.

rrr

import fileinput
import random
import shutil
import string
import sys

script = ""

def mutate (chromosome) :
"""Randomly replaces letters in the string."""
mutation = [random.choice(string.ascii_lowercase) if random.randrange (100) <
20 else x for x in "Hello world"]
return '’ .join (mutation)

def createInitialPop (candidates) :
"""Creates the initial population for generation O.
for i in range (candidates) :
cID = "0_"+str (i)
shutil.copyfile("./helloworld/helloworld.txt",
"./helloworld/"+script+"/0/helloworld"+cID+".txt")

def readChromosomeFromFile (cID) :
"""Reads the chromosome from a given ‘CacheHandlerx.dn' file."""
with
open("./helloworld/"+script+"/"+str (cID.partition("_") [0])+"/helloworld"+cID+"
as inFile:
return inFile.readline ()

def writeChromosomeToFile (cID, chromosome) :
"""Writes a given chromosome to a ‘CacheHandlerx.dn‘ file."""
with
open("./helloworld/"+script+"/"+str (cID.partition("_") [0])+"/helloworld"+cID+"

.txt")

.txt",

"w") as outFile:
outFile.write (chromosome)

def main (args) :
random. seed ()

tabLevel = ""

chromosome = []
generation int (args[0])
candidates = int (args[1l])
chromosomes = []
newChromosomes = []
global script

script = args|[3]

if generation == 0:
createInitialPop (candidates)
else:
Gets all of the previous generation’s chromosomes.
for i in range (candidates) :
0l1ldCID = str(generation - 1) + "_" + str (i)
chromosomes.append ((readChromosomeFromFile (01dCID), oldCID))

Applies a 30% chance of changing the string.
for currCandidate, chromosome in enumerate (chromosomes) :

newCID = str(generation) + "_" + str(currCandidate)

if random.randrange (100) < 30:

newChromosome = [mutate (chromosome[0]), newCID]
else:
newChromosome = [chromosome[0], newCID]

print (newChromosome)
newChromosomes.append (newChromosome)

Writes this new population to ‘.txt' files.
for currCandidate, chromosome in enumerate (newChromosomes) :
newCID = str(generation) + "_" + str(currCandidate)
writeChromosomeToFile (newCID, chromosome[0])
return 0O

if _ _name_ == '__main_ ':
sys.exit (main(sys.argv[l:]))

33

APPENDIX C

CACHINGPOLICY

C.1 cacheHandlerBase.dn

CachingPolicy 0.9
Copyright 2017 Ben Goldsworthy (rumperuu)

CachingPolicy is an EmerGen(e)tic module for testing the use of genetic
algorithms as applied to the cache updating behaviour of a web server.

This file is part of the CachingPolicy EmerGen (e)tic module.

CachingPolicy is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

CachingPolicy is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with CachingPolicy. If not, see <http://www.gnu.org/licenses/>.

o T e T e S S S N S e S N N S

~

/ * %
*x This program serves as the base for each mutated CacheHandler,
*x providing the functionality that is common to all of them.

*x/

/ * %

*% (@author Ben Goldsworthy (rumperuu) <me@bengoldsworthy.uk>

*% (@version 0.9

*x/

component provides cache.CacheHandler

requires io.Output out,

data.IntUtil iu,
util.RandomInt ir,
time.Calendar ic,
time.DateUtil du,
io.File {

static CachedResponse cachel[]
static int arraySize
static Mutex cacheLock

/%%

*x Returns a requested item from the cache.

* %

*% (@param resource The request item filepath

% (@return The item from the cache

*x/

CachedResponse CacheHandler:getCachedResponse (char filePath[]) {
// Converts the filepath to an array of bytes for the file.
File fd = new File(filePath, File.FILE_ACCESS_READ)
char resource[] = fd.read(fd.getSize())
fd.close ()

// Returns the item if it’s in the cache.

mutex (cachelock)

for (int 1 = 0; 1 < arraySize; i++) {
if (cache[i].resource == resource) {

}

{

cache[i] .hits++
cache[i].lastUsed = ic.getTime ()
return cache[i]

return null

/ **
* %
* %
* %
* %
* %
* %/

Updates the cache if the requested item is not already present.
If the cache is full, the method of determining the item to be

replaced is subject to genetic mutation.

@param ncr The new item to cache

void CacheHandler:updateCache (CachedResponse ncr) {
mutex (cacheLock) {

// If the item is already in the cache,

do nothing.

for (int 1 = 0; 1 < arraySize; i++) {
if (cache[i].resource == ncr.resource) {
cache[i] .response = ncr.response
cache[i] .resourceAge = ncr.resourceAge
return

// If the item is not, it must be added.

// As ‘ncr' was created on another component, its details must
// be copied to avoid a read-only exception.
CachedResponse newEntry = new CachedResponse ()

newEntry.command = ncr.command
newEntry.resource = ncr.resource
newkEntry.resourceAge = ncr.resourceAge

newEntry.mimeType = ncr.mimeType

newEntry.response = new byte[] (ncr.response)

newEntry.contentSize = ncr.contentSize

// Initialises the cache if there isn’t currently one.

if (cache == null) {

cache = new CachedResponse[CacheHandler .MAX_ SIZE] ()

// If the cache is full, determines which item to replace.

if (arraySize == CacheHandler.MAX_ SIZE)
int index

// BEGIN

index = 0

// END

cache[index % arraySize] = newEntry
//out .println ("$ (debugMSG) replacing:

{

$(iu.intToString(index))")

// Otherwise, appends the item to the end of the cache.

35

} else {
cachel[arraySize] = newEntry
arraySize++
}
}
}
/K *
* % Clears the cache completely.
* %/
void CacheHandler:clearCache () {

mutex (cacheLock) {
cache = null

/**
* What follows are utility functions that a given chromosome of the

* ‘updateCache () ' method may or may not call upon.
**/

// This method returns the index of the nth most frequently-used item in

// the cache.
int nthMostFrequentlyUsed (int n) {

int hits|[]
for (int 1 = 0; 1 < arraySize; i++) hits[i] = 0
int i
int j
mutex (cacheLock) {
for (1 = 0; i < arraySize; 1i++) {
for (j = 0; J < arraySize; j++) {
if (cache[i].hits == hits[j]) break
else 1if (hits[]j] == 0) {
hits[j] = cache[i].hits
break
}
}
}
}
int k = 0

int nthHit = 0
for (1 = 0; 1 < jJ; i++) |
if (hits[i] > nthHit) {
nthHit = hits[i]
k++

}
if (k == n) break

int itemIndices]|[]

mutex (cacheLock) {
3 =0
for (1 = 0; i < arraySize; 1i++) |
if (cache[i].hits == nthHit) itemIndices[j++] = 1

36

return resolve(itemIndices, "r")

// This method returns the index of the nth most recently-used item in
// the cache.
int nthMostRecentlyUsed (int n) {

DateTime useTimes/[]

DateTime testTime = ic.getTime ()
for (int 1 = 0; 1 < arraySize; i++) useTimes[i] = testTime
int i
int j
mutex (cacheLock) {
for (1 = 0; i < arraySize; 1i++) {
for (j = 0; J < arraySize; j++) {
if (du.equal (cache[i].lastUsed, useTimes[j])) break
else if (du.equal (useTimes[]J], testTime)) {
useTimes[j] = cache[i].lastUsed
break
}
}
}
}
int k = 0
DateTime nthUseTime = ic.getTime ()
for (1 = 0; i < jJ; i++) |
if (du.after (useTimes[i1], nthUseTime)) {
nthUseTime = useTimes[1i]
k++
}
if (k == n) break

int itemIndices]|[]
mutex (cacheLock) {
3 =0
for (1 = 0; i < arraySize; 1i++) |
if (du.equal (cache[i].lastUsed, nthUseTime)) itemIndices[j++] =

return resolve (itemIndices, "r")

// This method returns a random index.

int random() {
DateTime dt = ic.getTime ()
int msec = dt.millisecond

ir.setSeed (msec)
return ir.get (CacheHandler.MAX_SIZE)

// This method resolves a multiple return in one of the methods above,
// as per the flag sent along with the list of indices.
// 'n’ returns the newest, "o’ the oldest and 'r’ a random index.
int resolve (int index[], char flag) {
DateTime dt = null

i

37

if

(flag — "D") {
int newestItem = 0
int i = index.arrayLength-1

for (int 7 = 0; J < index.arrayLength; Jj++) {

if (dt == null) {
dt = cache[index[i]].timeAdded
newestItem = index[i]

} else {

if (du.before(dt, cache[index[i]].timeAdded))
dt = cache[index[i]].timeAdded
newestItem = index[i]

return newestItem
else 1if (flag == "o") {
int oldestItem = 0

for (int 1 = 0; 1 < index.arrayLength; i++) {
if (dt == null) {
dt = cachel[index[i]].timeAdded
oldestItem = index[i]
} else {

if (du.before(cache[index[i]].timeAdded, dt))
dt = cache[index[i]].timeAdded
oldestItem = index[i]

}

return oldestItem

else if (flag == "r") {
dt = ic.getTime ()
int msec = dt.millisecond

ir.setSeed (msec)

return ir.get (index.arrayLength)
else {

return O

{

{

38

C.2 mutator.py

#!/usr/bin/python

CachingPolicy 0.9
Copyright (c) 2017 Ben Goldsworthy (rumps)

CachingPolicy is an EmerGen(e)tic module for testing the use of genetic
algorithms as applied to the cache updating behaviour of a web server.

This file is part of the CachingPolicy EmerGen (e)tic module.

CachingPolicy 1is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

CachingPolicy is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with CachingPolicy. If not, see <http://www.gnu.org/licenses/>.

rrr

import fileinput
import math
import random
import shutil
import sys
import os

This script generates the initial population of candidate programs,
and performs mutation/crossover for each subsequent generation.

Mutation probability variables, to be read in from the config file upon the
first run of the mutation/crossover methods.

Mutation chance

Crossover chance

Binary Operator Mutation chance

Operand Mutation chance

nthMostx Mutation chance

Create Subtree Mutation chance

S e e S S e S e
G WN ko

probabilities = [None for x in range(6)]

with open("./project/cachingpolicy/config.conf") as inFile:
for i, line in enumerate (inFile) :
if 1 == 6:
intRange = int (line.partition(":")[2])

binaryOperators = ["x", "+", "-", "w/"]
operands = [str(n) for n in range (intRange)]
for n in range(intRange) :
operands.append ("nthMostRecentlyUsed (0)")
operands.append ("nthMostFrequentlyUsed (0) ")
operands.append ("random () ")
verbose = False

39

40
script = ""

def getSubLists(lst):

"""Recursively gets every sub-tree of a given expression.

subLists = []

for token in 1lst:

if isinstance (token, list):
subLists.append (token)
if getSubLists(token) is not None:
subLists.append (getSubLists (token) [0])

if len(subLists) == 0: return None

elif len(subLists) == 1l: return subLists[0]

else: return subLists

def crossover (parentA, parentB):
"""Crosses over a random subtree from chromosome A to a random point on
chromosome B."""
if verbose: print ("\tCrossover: Parent A (", compile (parentA), ") x Parent B
(", compile (parentB), ")")

subTrees = []
for i, token in enumerate (parentA):
if isinstance (token, list):
subTrees.append (token)
subLists = getSubLists (token)
if subLists is not None:
subTrees.append (subLists)

changePoint = []

temp = 0
while 1:
DEBUG - trying to avoid the endless loop error, if this is the cause.
temp += 1
if temp > 1000: break
#/DEBUG
changePoint = random.choice (parentB)
if not isinstance (changePoint, list):
if str(changePoint) .isnumeric() :

break
if len(subTrees) > 0:
newSubTree = random.choice (subTrees)
if verbose: print ("\t\tResult: "+compile (newSubTree)+" replaced operand
"t+changePoint+" ("+compile ([newSubTree if x==changePoint else x for x

in parentB])+")")
return [newSubTree if x==changePoint else x for x in parentB]
else: return [parentB]

def mutate (chromosome, initialPop = None) :
"""Recursively applies, to each token, a random chance of mutating
a given operand, operator, or replacing the former with an entirely
new expression."""
if probabilities[2] is None:
with open("./project/cachingpolicy/config.conf") as inFile:
for i, line in enumerate (inFile) :
if 1 < 6 and 1 > 1:
probabilities[i] = int(line.partition(":")[2])

operandMutChance = 100 if initialPop else probabilities[3]

41

for i, token in enumerate (chromosome) :
if verbose: print ("\tMutating: "+compile (chromosome))

token = str (token)

if len(chromosome) < 3:
if random.randrange (100) < probabilities[5]:# and "nthMost" not in token:
if len(chromosome) == 1:
chromosome. append (random.choice (binaryOperators))
chromosome. append (random.randrange (intRange))
elif random.randrange (100) < 50:
chromosome.remove (chromosome [0])

else:
chromosome[1l] = [random.choice (operands),
random.choice (binaryOperators), random.choice (operands)]
else:
if isinstance (token, list):
chromosome [i] = mutate (token)

if token in binaryOperators and random.randrange (100) < probabilities[2]:

chromosome [i] = random.choice (binaryOperators)
elif token.isnumeric () and random.randrange (100) < operandMutChance:
chromosome [i] = random.choice (operands)

rrr
elif "nthMost" in token and random.randrange (100) < probabilities[4]:
if random.randrange (100) < 50:
chromosome [i] = "nthMostRecentlyUsed" if token ==
"nthMostFrequentlyUsed" else "nthMostFrequentlyUsed"
else:
chromosome.remove (token)

rrr

if verbose: print ("\t\tResult: "+compile (chromosome))
return chromosome

def parse (chromosome) :
"""Given a ‘str' representation of a chromosome, recursively parses

it into a ‘Listt."""
i=0
counter = 0
substring = ""
result = []
while i < len(chromosome) :
if chromosome([i] is "x"
i += len("random()")
result.append ("random()")
elif chromosome[i] is "n"
function = ""
if chromosome[i+7] is "F":
function = "nthMostFrequentlyUsed"
elif chromosome[i+7] is "R":
function = "nthMostRecentlyUsed"
i 4+= len(function)-1
result.append (function)
elif chromosome[i] is " (":
substring = ""
for j in chromosome[i:]:
if J is "(":
counter += 1
elif 7 is ")":

42

counter —=1
substring += j
if counter == 0:
result.append (parse (substring[l: (len(substring)-1)1))
i += len(substring) - 1
break
elif chromosome[i].isnumeric() :

num = ""

while chromosome[i].isnumeric() :
num += chromosome [1]

i +=1
if 1 == len (chromosome) :
break
if len(num) > O0:
i -=1

result.append (num)
elif chromosome[i] in binaryOperators:
result.append (chromosome [i])
i+=1
return result

def compile (chromosome) :
"""Given a ‘List‘ representation of a chromosome, recursively compiles
it into a ‘strt'."""
string = ""
for 1 in chromosome:
if isinstance (i, list):

string += " ("
string += compile (i)
string += ")"

else:

string += str (i)
return string

def createlInitialPop (candidates) :

"""Creates the initial population for generation 0."""

for i in range (candidates) :
cID = "0_"+str (1)
shutil.copyfile("./cache/CacheHandlerBase.dn",

"./cache/"+script+"/0/CacheHandler"+cID+".dn")

writeChromosomeToFile (cID, parse (readChromosomeFromFile (cID)))
os.system("dnc ./cache/"+script+"/0/CacheHandler"+cID+".dn")

def readChromosomeFromFile (cID) :
"""Reads the chromosome from a given ‘CacheHandlerx.dn' file."""
with
open ("./cache/"+script+"/"+str (cID.partition("_") [0])+"/CacheHandler"+cID+".dn")
as inFile:
for line in inFile:
if "// BEGIN" in line:
return next (inFile) .partition(" = ") [2].rstrip()

def writeChromosomeToFile (cID, chromosome) :
"""Writes a given chromosome to a ‘CacheHandler*.dn‘ file."""
shutil.copyfile("./cache/CacheHandlerBase.dn",
"./cache/"+script+"/"+str (cID.partition("_") [0])+"/CacheHandler"+cID+".dn.temp")
with
open ("./cache/"+script+"/"+str (cID.partition("_") [0])+"/CacheHandler"+cID+".dn.temp"
as inFile:

43

with
open ("./cache/"+script+"/"+str (cID.partition("_") [0])+"/CacheHandler"+cID+".dn",
"w") as outFile:
for line in inFile:
outFile.write (line)
if "// BEGIN" in line:

outFile.write ("\t\t\t\tindex = "+compile (chromosome[0])+"\n")
next (inFile)
os.remove ("./cache/"+script+"/"+str (cID.partition("_") [0])+"/CacheHandler"+cID+".dn.temf

def hasSubTrees (chromosome) :
for x in chromosome[0]:
if isinstance(x, list): return True
else: return False

def main (args) :
random. seed ()

tabLevel = ""

chromosome = []

generation = int (args[0])

candidates int (args([1])

chromosomes []

newChromosomes = []

global script

script = args|[3]

global verbose

verbose = True if int (args[2]) == 1 else False

if generation == 0:
createInitialPop (candidates)
else:
Gets all of the previous generation’s chromosomes.
for i in range (candidates) :
0ldCID = str(generation - 1) + "_" + str (i)
chromosomes.append ((parse (readChromosomeFromFile (01dCID)), oldCID))

Reads in the results of the previous generation’s chromosomes.

rankSelect = []
with open("./results/"+script+"/results"+str (generation-1)+".txt") as
inFile:
for line in inFile:
rankSelect.append([line.partition(":") [0],
line.partition(":") [2].partition("ms") [0]])

Sorts them by response time

rankSelect.sort (key=lambda x: int (x[1]))

Truncates the bottom 90% of the candidates
del rankSelect[int (math.ceil (candidates/10)) :]

remainingIDs = [str(n) for n in range(candidates)]

Retains the top 10% best-peforming chromosomes for the next
generation.
if verbose: print ("\nApplying rank selection to top 10% from prev.
generation...")

for currCandidate, o0ldCID in enumerate (rankSelect) :

newCID = str(generation) + "_" + str(oldCID[0].partition("_")[2])

for chromosome in chromosomes:

if chromosome[l] == 0l1ldCIDI[O0]:
if verbose: print ("\tResult: "+str (0ldCID[0])+" copied to "+newCID)

44

newChromosome = [chromosome[0], newCID]
newChromosomes.append (newChromosome)
#chromosomes.remove (chromosome)
remainingIDs.remove (newCID.partition("_") [2])
break

if verbose: print ("\n")

if probabilities[0] is None:
with open("./project/cachingpolicy/config.conf") as inFile:
for i1, line in enumerate (inFile) :
if i > 1: break
probabilities[i] = int(line.partition(":")[2])

For the remaining chromosomes, creates the next generation’s
population, whilst having a chance to affect mutation or
crossover operations on each.
for currCandidate, chromosome in enumerate (chromosomes) :
if str(currCandidate) in remainingIDs:
newCID = str(generation) + "_" + str(currCandidate)

newChromosome = [chromosome[0], newCID]
if random.randrange (100) < probabilities[0]:
haveSubTrees = [x for x in chromosomes if hasSubTrees (x)]
if len (haveSubTrees) > 1:
parentB random.choice (haveSubTrees) [0]
if hasSubTrees (chromosome[0]) :
if verbose: print ("Crossing over into "+newCID)
newChromosome = [crossover (chromosome[0], parentB, verbose),
newCID]
if verbose: print ("Crossover finish.")

if random.randrange (100) < probabilities[1l]:

if verbose: print ("Mutating "+str (generation-1) + "_" +
str (currCandidate) +"->"+newCID+":")

newChromosome = [mutate (chromosome[0], True), newCID]

if verbose: print (str(generation-1) + "_" +

str (currCandidate) +"->"4+newCID+" mutation finish.\n")

newChromosomes.append (newChromosome)

Writes this new population to ‘.dn‘' files, and then runs the
Dana compiler on the.
for currCandidate, chromosome in enumerate (newChromosomes) :

newCID = str(generation) + "_" + str(currCandidate)

writeChromosomeToFile (newCID, chromosome)

os.system("dnc

./cache/"+script+"/"+str (newCID.partition("_") [0])+"/CacheHandler"+newCID+".dn")
return 0

if __name_ == '__main_ ’:
sys.exit (main(sys.argv[l:]))

C.3 emergenetic.dn’s runCandidates () method

/%%
** Runs a candidate through a test. Modify this method for changing
*x what is being tested.

* %

% (@param generation The generation of the candidate.

45

*% (@param candidate The number of the candidate.
*% (@param script The name of the script file being used.

* %/

void runCandidate (int generation, int candidate, char scriptl[]) {
LoadedComponents 1c
IDC com

CacheHandler c
CachedResponse cr
DateTime start
TextFile scriptFile

// Loads the given candidate file.

lc =
loader.load("./cache/$ (script) /$ (intUtil.intToString (generation))/CacheHandlers$ (in

com = lc.mainComponent

c = new CacheHandler () from com :< CacheHandler

start = calendar.getTime ()

// Runs all of the files within the given script file as requests.
scriptFile = new TextFile("./scripts/$ (script) .script",
File.FILE_ACCESS_READ)
char line[] = scriptFile.readLine ()
while (line != "") {
cr = c.getCachedResponse (line)
line = scriptFile.readLine()
}

scriptFile.close()

// Records the response time to complete all requests and records

// the results.

int responseTime = dateUtil.toMilliseconds (dateUtil.diff (start,
calendar.getTime ()))

printResults (generation, candidate, intUtil.intToString(responseTime),
"ms", script)

// Unloads the component (s) .

c = null

for (int k = 0; k < lc.loadedComponents.arrayLength; k++) {
unloader.unload(lc.loadedComponents[k].class)

}

C.4 setup.sh

#!/bin/bash
Performs pre-run setup before a test run.

GENS=$1
SCRIPT=$2

cp ./cachebackup/CacheHandlerBase.dn ./cache/CacheHandlerBase.dn
mkdir ./cache/$2
mkdir ./results/$2
for 1 in ‘seq 0 $1%'; do
mkdir ./cache/$2/$1
touch ./results/$2/results$i.txt
done

C5 config.conf

46

mutChance: 60
croChance:50
binOpMutChance:40
operandMutChance:30
nthMostMutChance:30
incrComplexityChance:75
intRange:20

C.6 Gen. 18 chromosomes

index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index
index

0

O-nthMostFrequentlyUsed(0)
nthMostFrequentlyUsed (0) /nthMostRecentlyUsed (0)
nthMostRecentlyUsed (0) -nthMostFrequentlyUsed (0)

0

OxnthMostRecentlyUsed (0)
nthMostFrequentlyUsed (0) /nthMostRecentlyUsed (0)

0

O-nthMostRecentlyUsed (0)

0

nthMostRecentlyUsed (0) -nthMostFrequentlyUsed (0)
nthMostRecentlyUsed (0) xnthMostRecentlyUsed (0)
nthMostRecentlyUsed (0) +nthMostRecentlyUsed (0)
nthMostFrequentlyUsed (0) /nthMostFrequentlyUsed (0)
0/nthMostRecentlyUsed (0)
nthMostFrequentlyUsed (0) /nthMostFrequentlyUsed (0)
nthMostRecentlyUsed (0) xnthMostRecentlyUsed (0)
O-nthMostRecentlyUsed (0)
nthMostRecentlyUsed (0) /nthMostRecentlyUsed (0)

0*3
nthMostFrequentlyUsed (0) +nthMostFrequentlyUsed (0)
nthMostRecentlyUsed (0) xnthMostFrequentlyUsed (0)
O+nthMostRecentlyUsed (0)
nthMostFrequentlyUsed (0) +nthMostFrequentlyUsed (0)
0

0

nthMostRecentlyUsed (0) «13
19xnthMostRecentlyUsed (0)
nthMostFrequentlyUsed (0) /nthMostRecentlyUsed (0)

0
nthMostFrequentlyUsed (0) /nthMostFrequentlyUsed (0)
nthMostRecentlyUsed (0) xnthMostFrequentlyUsed (0)
nthMostFrequentlyUsed (0) /nthMostRecentlyUsed (0)
11/random ()
nthMostRecentlyUsed (0) —-nthMostRecentlyUsed (0)

APPENDIX D

RUNTESTS.SH

#!/bin/bash
Runs Emergen(e)tic with a series of scripts

GEN="30"
CAN="20"

dnc "emergenetic.dn"

for FILE in ./scripts/x; do
FILE=S{FILE##~*/}
FILE=S{FILE%.script}

dana "emergenetic" SFILE $GEN S$SCAN

for DIR in ./cache/*; do
(cd "SDIR" && rm *.0)
done
cd results/ && rm x.txt && cd
tar —-jcvf ./archives/$FILE.bz2 cache
rm —R cache
cp —a ./cachebackup ./cache
done

echo ’'Complete.’ >complete.txt

47

